澳门威尼斯人赌场官网-澳门网上赌场

【科研進展】吳志澤團隊在圖結構數據驅動的人體動作識別研究方面取得新進展

發布者:科研處發布時間:2025-04-10瀏覽次數:18

人工智能與大數據學院吳志澤團隊在基于骨架數據的人體動作識別研究中取得重要進展,提出了一種結合圖卷積網絡(GCN)與自注意力機制(Self-Attention)的新方法。相關研究成果以“SelfGCN: Graph Convolution Network With Self-Attention for Skeleton-Based Action Recognition”為題,發表在國際頂級學術期刊《IEEE Transactions on Image Processing》上(DOI: 10.1109/TIP.2024.3433581)。吳志澤教授為論文第一作者,我校全職德籍教授湯衛思(Thomas Weise)為論文通訊作者,合肥大學人工智能與大數據學院為論文第一完成單位。


人體動作識別是計算機視覺領域的重要研究方向,在視頻分析、手勢識別、智能監控和人機交互等應用中具有廣泛價值。相比基于視頻或圖像的方法,骨架數據能夠通過人體關鍵關節的二維或三維坐標來表達人體結構,具有一定的環境適應性和計算效率。然而,如何充分利用骨架數據,準確建模不同關節之間的復雜時空關系,以提升識別精度,仍然是一個值得研究的挑戰。

 為此,研究團隊提出了SelfGCN模型,該方法基于圖卷積網絡構建人體骨架的拓撲結構,并引入自注意力機制,以自適應地調整關節節點的重要性權重,從而更精準地捕捉動作特征。這一研究工作為基于圖結構數據的人體動作識別提供了新的思路,有助于進一步理解和優化人體運動特征的建模方法。

(撰稿:吳彩麗,一審:陳朝明,二審:王磊,三審:王儲炎)

 


百家乐波音平台路单| 陵川县| 三亚百家乐官网的玩法技巧和规则 | 德州扑克游戏| 百家乐官网博彩桌出租| 新天地百家乐官网的玩法技巧和规则| 百家乐现场投注平台| 六合彩 开奖| 摩纳哥百家乐官网的玩法技巧和规则 | 恒利百家乐的玩法技巧和规则 | 百家乐游戏平台架设| 博彩网站评级| 蓝宝石百家乐官网娱乐城| 大发888真钱娱乐游戏博彩| 百家乐官网api| 威尼斯人娱乐城赌博网| 百家乐官网哪家有优惠| 百家乐官网赌法博彩正网| 钱柜百家乐官网的玩法技巧和规则 | 新澳博国际娱乐| 游戏机百家乐作弊| 大发888官方 df888 gfxzylc8| 登封市| 7人百家乐桌布| 百家乐官网实战案例| 大发888真钱娱乐网| 杨公24山日课应验诀| 金木棉蓝盾在线娱乐| 百家乐官网视频游戏客服| 荷规则百家乐的玩法技巧和规则| 百家乐官网投注之对冲投注| 威尼斯人娱乐城信誉lm0| 百家乐官网赌的技巧| 新太阳城工业区| 宝龙百家乐官网的玩法技巧和规则 | 澳博娱乐| 百家乐官网视频画面| 丹巴县| 涂山百家乐的玩法技巧和规则 | 澳门百家乐官网真人版| 大发888娱乐场下载yguard|